作者:万建余 徐福根 杨志鹏
【关键词】空分设备 有效能损失 节能 优化
【摘 要】通过空分设备有效能损失分析方法,有效损失主要存在压缩机、主换热器、精馏塔、气体管线。经节能改造和优化操作,最终达到提高有效能利用率,从而达到节能的目的。
随着我国经济的快速发展和人民生活水平的不断提高,年人均能源消耗量将逐年增加,据预测,到2050年将达到2.38吨标准煤,相当于目前世界平均值(2.4吨标准煤),但远低于目前发达国家的水平。人均能源的不足将是我国经济、社会可持续发展的一个限制因素,要解决能源问题,出路不外乎两条:一是开源;二是节流。我国实行的开发和节约并重的能源政策。近期把节能放在优选考虑的地位,通过正确的用能,合理用能,节约用能,减少能源浪费,提高能源的有效利用率,达到节能的目的。
空分设备的原料是空气,其主要消耗的是能源,能源消耗占生产成本的80%,降低生产成本的主要措施是降低能耗,而空分设备所消耗的能源是由不可逆过程引起的,尽管每一个可逆过程中所消耗的能量方式不尽相同,但都会产生有效能的损失。因而,可以从空分各个工艺过程有效能分析来寻找最佳节能途径。
1 有效能
系统在一定状态下的有效能,就是系统从该状态变化到基态过程所做的理想功,用 表示,对于稳定流动过程,从状态1变化到状态2过程的理想功可以写为
式中为基态的温度;为熵;为焓。
当系统由任意状态变到基态时,稳流系统的有效能 定义为
有效能可分为物理有效能和化学有效能,物理有效能是指系统的温度、压力等状态不同于环境而具有的能量。空分运行中与热量传递有关的加热、冷却、冷凝过程,以及与压力变化有关的压缩、膨胀等过程,只考虑物理有效能。可表示为
式中为温度与环境不平衡具有的有效能;为压力与环境不平衡具有的有效能。由热力学定律可得
式中为定压比热;为摩尔数;摩尔体积;为压力。
化学有效能是指处于环境温度和压力下的系统,由于与环境进行物质交换或化学反应,达到与环境平衡,所做的最大功。从系统的状态到环境状态需要经过化学反应与物理扩散两个过程:将系统的物质转化成环境物质(基准物)过程及物质浓度变化到与环境浓度相同的过程。在空分设备中的化学有效能是以物理扩散有效能形式存在。
2 有效能损失
在能源转化、转移、传递和使用的过程中,有效能可以有效地利用发挥其功效,也可无效地损失,也就是通常说的有效能损失,有效能损失是不可逆的。
空分设备的有效能输入,主要有空压机电耗、原料空气所带入的有效能、水泵消耗的电能、氩泵消耗的电能、电加器消耗的电能。有效能损失占总输入有效能的比例非常高,也即有效能效率很低,老式全低压空分不大于12%[1] ,现代大型空分也只有在20%[2]左右。其中空压机有效能损失和空分塔的有效能损失所占的比重较大。空分设备有效能损失主要存在传热过程、压缩或膨胀过程、节流过程、精馏过程中。
2.1传热过程有效能损失
传热过程的有效能损失与传热量、温差和温位有关,可表示为
式中为传热量;为传热过程的有效能损失。
从上式可知,两物流在热传递过程中,热量和温差相同,温位越低,传递过程的有效能损失越大;传热量越大,有效能损失也越大。利用上式对空分主换热器进行分析得,传递相同热量,每1 温差造成的有效能损失冷端是热端的3.1倍,因此,空分操作过程中,特别要控制好主换器冷端温差。
2.2压缩过程有效能损失
静压能的提高与气体在级中的压缩过程有关,所需的功称为压缩功,在空压机中由于气流速度很快,压缩过程中与外界没有热量交换,即为绝热定熵过程。从状态1 压缩到状态2 定熵功为
式中为气体常数;;为空压机进口压力;为空压机的出口压力。
定熵功与进口温度、压力和出口压力有关,与出口温度无关,空分用空压机一般为多级压缩,若冷却效率低,每级压缩进口温度高,则所需的功要大。假设空压机为三段压缩,每段压缩比都为,冷却后温度提高1℃,则空压机消耗功率增加0.4%。在实际运行中,可以降低水温,控制冷却器的结垢,提高冷却器的效率,降低冷却后温度,减少空压机功耗。另一方面,空压各级进气温度条件及空分装置进气温度条件要求,必须进行冷却,由冷却前温度降低到温度 ,带来有效能损失为
在图2中,1-3为绝热压缩过程,设绝热效率为: ,那么,因摩擦损失引起热量为 ,假定绝热可逆压缩后状态为3,绝热不可逆压缩后状态为4,它们等温不等压,由于摩擦损失以热形式加给气体,引起所需的压缩功增加为三角形134 面积。
图2 图上的与无热交换压缩过程
三角形面积。 摩擦损失引起热量为
由绝热方程:
由于绝热可逆压缩过程为等熵过程,不可逆压缩过程为熵产生过程,熵产生为
则空压机的有效能损失为
从上式分析,空压机效率越低,有效能损失越大。
2.3阻损带来有效能损失
在定态流动过程中,如果物系和环境不发生功和热的交换,
阻损带来的有效能损失为
对于理想气体来说,
上述公式而知,相同压力下,阻力损失越大,有效能损失也大,相同阻力损失下,压力越大,有效能损失越小。要尽量减少管路的阻力来降低有效能损失。
2.4精馏系统有效能损失
以塔板精馏为例,从下面上升进入某块板的温度要比上面流下的液相温度高些,而易挥发组分的含量则低于与下降液体相平衡的浓度,两股物流在温度和组成上都不平衡,在塔板上发生热量和质量传递过程是不可逆的,必然造成有效能的损失,这就是精馏过程中有效损失的主要部分。
当物质摩尔由化学位的相Ⅰ传到相Ⅱ时,产生的有效能损耗,由热力学分析得(在等温等压下),精馏过程中有效损失为
精馏过程中,化学位是传质的推动力,正是由于两相化学位的差异而导致传质过程,从产生有效能的损失。要减少每块塔板上传热和传质推动力,就要使操作线与平衡线接近,过程趋于可逆,是降低有效能损失的主要途径。
2.4.1下塔及粗氩塔分析
图3 操作线示意图
空分下塔和粗氩塔一般操作线方程为
,即回流比; 为某组成在塔顶的浓度。从图3和操作线方程可知,操作线的斜率为,当越大时,操作线越靠近平衡曲线,这时回流越小。可见,要减少有效能损失,必须使回流比尽可能的小,但当操作回流比为最小回流比时,需要无穷多理论塔板数,所以一般控制回流比。
2.4.2上塔分析
上塔精馏段操作线和提馏段操作线的在平衡曲线图上交于一点,交点的轨迹为一条直线,通常称为线。线的斜率不同,液空进料口的状态也不同,回流比与线关系:(1)当精馏段操作线和线的交点落在平衡曲线上时,回流比最小,最节能。(2)当精馏段操作线和线的交点落在平衡图的对角线上时,回流比最大,能耗最高。
图4 上塔操作线示意图
图4 操作线示意图
3 节能改造与操作
通过对空分设不同过程的有效能损失的分析,寻找到节能潜力最大的环节,对新钢公司气体厂的两套空分设备进行挖潜改造和优化操作:
(1)管路的阻力损失来减少有效能损失。2005年7月25000m3/h空分投产,18000m3/h空分停机全面检修的机会,把18000m3/h空分用空压机出口止回阀,由原来DN400的更换成一与管道通径相同的DN600的,使空压机到氮水预冷段的压力损失减少了25Kpa。2005年底对25000m3/h空分的分子筛再生氮、产品氧气、产品氮气等三个流量孔板重新设计并更换,取消了进空分装置流量孔板,以降低系统阻力损失,从而达到降低有效能损失,降低情况见表1。
降低系统循环水温和控制机器冷器系统结垢,提高压缩机冷器的效率,减少温差带来的有效能损失。18000m3/h空分系统,随着夏季气温的升高,水温达32~33℃,制约了空分设备的满负荷生产,增加设备电量能耗,通过与老系统管网联通(原3200m3/h空分冷却水循环系统),充分利用两台老冷却的能力,使给水温度能保持在28~29℃。25000m3/h空分运行不到一年,发现氮压机的冷却器结垢很严重,制约了设备运行效率,水系统进行加约处理。25000m3/h空分循环冷却水系统使用两台喷雾冷却塔,处理水量3000t/h,夏季运行时给水温度达36.5℃,冷却温差仅有5.5℃(回水温度为42℃时),严重制约了整个装置效率的发挥,通过增加两台600t/h的玻璃钢冷却塔以加强冷却效果,循环水泵达不到出力,经厂家对叶轮改造,使水流量及压力增大到设计值。尽管如此,还是没有达到预期的效果,06年,进一步对冷却塔进行改造:(1)两台冷却塔各加装一台190000m3/h风量的冷却风机;(2)塔内增加厚1000mm的聚丙烯波纹填料。(3)收水器
(2) 给水与冷却后气体的温差控制在设计范围内。
(3) 优化空分操作,减少精馏系统的有效能损失。(1)主冷液面在保证全浸的安全要求下,尽量降低,缩小主冷两则的温差,从而达到减少因传热温差引起的有效能损失;(2)在保证空分塔精馏工况,尽量减小回流比,减少因塔板上相之间浓度差偏大所产生的物理扩散有效能损失。
(4) 降低操作压力。保证主冷液面稳定情况下,降低上塔压力,从而达到降低空压机的排压。以25000m3/h空分为例,通过主冷两侧的汽液平衡计算出下塔压与上塔压的关见表2
表2 25000m3/h空分主冷液面为3200mm时,上下塔操作压力
上塔底部压力(A)/kPa
主冷底部压力(A)/kPa
主冷上部温度/K
主冷底部温度/K
主冷平均温度/K
下塔顶部温度/K
下塔顶部压力(A)/kPa
从图5中可知,在保证空分正常精馏工况的主冷换热温差情况下,上塔最低要求压力与下塔压力成线性关系。为了操作方便,对表2中的数据进行回归得关联式
4结论
根据热力学第二定律,对空分设备的几个生产过程进行了有效能损失分析,寻找到最佳的节能途径,提出了节能措施,通过改造和优化操,使18000m3/h和25000m3/h空分生产能耗有效的降低。
参考文献
[1] 何耀文.深冷过程的有效能分析 [J]. 深冷技术,1981,(6): 1~19
[2] 张哲.空气分离装置的有效能分析及节能研究.硕士论文.华东理工大学.2003
[3] 沈维道 郑佩芝 蒋淡安.工程热力学[M] . 北京:高等教育出版社,1983.9
期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。
【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。