协同过滤数据稀疏性问题研究(2)
3.3 降维的方法
用户-项目评分矩阵出现数据稀疏的情况是由项目的高维数据引起的,因此可以考虑采取一定措施降低项目数据的维度,进而达到约减数据的目的。目前常见的降维技术主要有简单降维方法、矩阵分解和主成分分析(PCA)三类。
(1)简单降维方法。简单的降维方法就是通过设置限制条件删除一些用户和项目,从而降低用户-评分矩阵的维度。被删除的往往是没有参加过评分活动或者是评分次数很少的用户,或者是没有被用户评价过或者是被评价的次数很少的项目。利用该方法可以在一定程度上降低评分矩阵的维度,但是无法对被删除的用户或者项目进行推荐,这就导致了用户流失和信息隐藏的问题。
(2)矩阵分解。矩阵分解的最简单方法是单值分解算法。用该方法分解用户-项目评分矩阵,可以约减评分矩阵中的数据。但是该算法在分解矩阵的过程中会造成数据遗失,影响准确率。
奇异值分解(SVD)是一种矩阵分解的有效方式,该技术在计算机科学、统计学等领域有着广泛应用。SVD可以将高度相关且在一起出现的内容作为单独因子,把通常很大的矩阵向量拆解成更小阶的近似矩阵。奇异值分解能够应用于协同过滤算法解决数据稀疏性问题,主要原因是协同过滤中用户对项目评分是因为用户对这些项目的隐含特性比较感兴趣,而这些项目之间也存在着一些共同的特征。用户喜欢某一项目的表现为用户对这些项目的评分比较高,所以通过将用户的评分用线性代数方法分解为一些特征,可以根据用户对这些特征的喜好程度来预测用户对他所没有评过分的项目的喜好。
(3)主成分分析。主成分分析是基于矩阵特征值分解计算的标准统计分析方法。该方法式将原来的变量重新组合成一组新的互相无关的综合变量,同时根据实际需要可以从中取出几个能够尽可能多地反映原来信息综合变量作为新的参考信息。经过PCA处理后,原始评分数据被投射到最相关的主特征向量上,从而能够约减数据集。
降维技术虽然在一定程度上能够降低用户-项目评分矩阵的规模和稀疏程度,但采用该技术也流失了一部分用户对项目的评分数据。C C Aggarwak指出降维技术产生的效果与数据集密切相关,在项目空间维度很高的情况下进行降维,效果往往难以得到保证。
3.4 结合内容的过滤
协同过滤利用的信息只是用户评分数据,基于内容的过滤可以具体显示用户的描述信息,因此将这两种方式融合在一起可以增加可利用的数据量。具体的融合方式有以下四种[3]:
(1)综合考虑协同过滤和基于内容的过滤的推荐结果,采用一定方式将两种结果融合在一起。
(2)将协同过滤和基于内容的过滤集成到一个统一的模型。
(3)将协同过滤的部分功能集成到基于内容的过滤。
(4)将基于内容过滤的部分功能集成到协同过滤。
4 结束语
数据稀疏性不仅降低了最近邻居搜寻准确率,而且也降低了推荐覆盖率,直接影响着推荐的质量与效率。因此稀疏性问题一直是进行推荐系统研究的重点。目前,众多专家和学者已经提出了解决数据稀疏性的方法,有效的提高了推荐结果的质量。
参考文献:
[1]孙小华.协同过滤系统的稀疏性与冷启动问题研究[D].浙江大学,2005.
[2]邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004(09):1665-1670.
[3]G Adomavicius,A Tuzhilin. Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005(06):734-749.
期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。
【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。
投稿辅导服务咨询与期刊合作加盟
陆老师联系QQ: 913775405(普刊)
蒋老师联系QQ: 867306987(核心)
刘老师联系QQ: 271374912(核心)
联系电话:18015016272
17327192284
投稿辅导投稿邮箱:zgqkk365@126.com
期刊推荐
- 《课程教育研究》 旬刊 国家级
- 《网络空间安全》(信息安全与技术)月刊 国
- 《价值工程》旬刊 国家级 科技统计源期刊
- 《高教论坛》 月刊 省级
- 《法制与社会》旬刊 省级
- 《中国教育学刊》月刊 14版北大核心
- 《语文建设》 旬刊 14版北大核心
- 《中国绿色画报》 月刊 国家级
- 《社科纵横》季刊 社科类优秀期刊
- 《求索》月刊 14版北大核心期刊
- 《财会月刊》旬刊 14版北大核心
- 《艺术品鉴》 月刊 省级
- 《中华建设》月刊 国家级 建设类优秀期刊
- 《教学与管理》旬刊 北大核心
- 《当代经济》 旬刊 省级
- 《新课程研究》旬刊 省级 教育类优秀学术期
- 《文教资料》 旬刊 省级
- 《学术界》 月刊 双核心
- 《吉林教育》旬刊 省级 教育类学术期刊
- 《中国农业资源与区划》 月刊 14版北大核心
- 《继续教育研究》月刊 北大核心期刊
- 《财经界(学术版)》半月刊 国家级
- 《电影评介》半月刊 14版北大核心
- 《公路交通科技》 月刊 北大核心
- 《新闻传播》月刊 省级 新闻类优秀期刊