期刊库

教育   经济   科技   财会   管理   
医学   法学   文史   工业   建筑   
农学   水利   计算机   更多>>
 首 页    论文大全   论文精品    学术答疑    论文检测    出书咨询    服务流程    诚信通道    关于我们 

基于压缩感知的监控视频运动对象提取算法

人气指数: 发布时间:2015-01-13 10:54  来源:http://www.zgqkk.com  作者: 周启亚
分享到:

 

  摘 要:从监控视频场景中提取出运动对象,对于后续场景理解、语义分析、智能处理有着重要的意义。提取运动对象有检测、跟踪等多种手段,本文提出一种基于压缩感知的监控视频运动对象提取算法,将视频数据分解为稀疏和低秩分量,实验表明算法的有效性。

  关键词:压缩感知;运动对象;提取

  中图分类号:TP391.41

  运动对象的提取可以通过检测、跟踪等方法来实现,是计算机视觉领域具有挑战性的研究任务之一,由于场景中对象的外形和运动特点经常发生突变,使得实现鲁棒的跟踪算法极其困难。影响跟踪的主要因素有遮挡、对象姿态、亮度及运动状态的变化等,要能同时处理所有的这些变化,跟踪方法通常需要具备复杂的观察、运动模型及有效的跟踪模型。

  外观模型用于评价候选状态是否是真实目标状态的可能性并选择最佳候选状态作为当前帧的跟踪结果,其对于实现正确的跟踪十分重要,根据所使用的外观模型,通常可将跟踪算法分为产生式和辨别式两种。产生式跟踪算法先通过建立模型来表达目标对象,如用特征空间、线性子空间仿射形变,自适应低维子空间等表示方法,再使用该模型搜索具有最小重构误差的图像区域;辨别式跟踪算法把跟踪问题视为二值分类任务,寻找从背景中分离目标对象的边界,稀疏贝叶斯学习、在线多实例学习等方法被用来处理跟踪过程中出现的遮挡、严重形变等复杂情况,从而实现对象的可靠跟踪。

  运动模型用于预测目标随着时间最有可能的运动,为跟踪器提供多个候选状态,典型的运动模型有粒子滤波或卡尔曼滤波。粒子滤波基于蒙特卡洛方法(Monte Carlo methods),它是利用粒子集来表示概率,可以用在任何形式的状态空间模型上。其核心思想是通过从后验概率中抽取的随机状态粒子来表达其分布,是一种顺序重要性采样法(Sequential Importance Sampling)。

  基本的跟踪器可以把一对基本的观察模型和运动模型构建为一个马尔可夫链模型,用来产生估计最大后验概率的状态抽样。多个基本的跟踪器交换信息可以实现这些模型彼此间信息融合,例如使用交互式马尔可夫链蒙特卡洛来实现多个跟踪模型间的并行与交互。本文提出一种基于压缩感知的监控视频运动对象提取算法。

  1 问题构造

  与图像显著性检测不同,视频中的运动区域更吸引人的注意力,视频显著性区域不是每一单独帧中具有较大对比度的区域。由于相邻帧的相关性,视频中的运动区域能通过低秩和稀疏分解从背景中分离出来。前景运动对象,例如汽车、行人通常占图像像素的一小部分,因此可视为稀疏误差。记视频沿X-T和Y-T的时片为矩阵S,很自然地,低秩分量对应为背景,稀疏分量对应前景运动对象。

  2 分解

  沿X-T和Y-T的时片S分解如下:

  3 优化

  考虑到属于同一运动对象的像素具有局部相关性,为了减少提取的运动对象上丢失像素,我们拟利用空间信息来对上一步骤得到的结果进行优化。也就是说像素Pi,j,k可能被认为不是运动对象,而它相邻像素均为运动显著性像素,我们用以下方法来恢复像素Pi,j,k的显著性:

  以Pi,j为中心的半径为 的局部区域进行上式运算,‖*‖2为?2范式,f为高斯函数, 。

  4 实验

  前面的过程不可避免引入部分噪音,也就是绝对值小于一定阀值的显著像素值本应属于背景,为了处理这一问题,我们采用自适应阀值选择步骤来排除噪音。假定Scube中的像素显著性值满足高斯分布(μ,σ),因此,我们自适应选取Tglobal=μ+σ作为阀值:

  事实上,相对较小的区域在实现过程中被筛选掉了,因为人眼觉察到太小的运动对象较为困难。

  参考文献:

  [1]C.Liu.Beyond Pixels:Exploring New Representations and Applications for Motion Analysis[J].Doctoral Thesis.Massachusetts Institute of Technology,2009.

  [2]Fan Yang,Huchuan Lu,Ming-Hsuan Yang.Robust Visual Tracking via Multiple Kernel Boosting With Affinity Constraints[J].IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2014.

  [3]Qing Wang,Feng Chen,Wenli Xu,Ming-Hsuan Yang.Object Tracking via Partial Least Squares Analysis[J].IEEE TRANSACTIONS ON IMAGE PROCESSING,2012.

  [4]Hae Jong Seo,Peyman Milanfar.Static and space-time visual saliency detection by self-resemblance[J].Journal of Vision,2009.

    期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
      本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。


      【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

     
    QQ在线咨询
    投稿辅导热线:
    180-1501-6272
    微信号咨询:
    fabiaoba-com
    咨询电话:18015016272 投稿邮箱:zgqkk365#126.com(#换成@)
    本站郑重声明:文章只代表作者观点, 并不意味着本站认同。所载文章、数据仅供参考,使用前请核实,风险自负。
    部分作品系转载,版权归原作者或相应的机构   若某篇作品侵犯您的权利,请来信告知.版权:周口博闻教育咨询有限公司 
    Copyright © 2005-2023 . 期刊库 版权所有