基于Logistic回归变量筛选的BP神经网络及应用
摘要:BP神经网络是一种使用非线性可导函数作为传递函数的前馈神经网络,具有较高的精确度,但过多的预测变量会影响BP神经网络的准确性。采用Logistic回归变量筛选方法能在一定程度上提高分类准确性,提高模型效率。对2013年沪深两市A股分类评级进行了研究,证明基于Logistic回归变量筛选的神经网络提高了两极类别分类的准确性。
关键词关键词:BP神经网络;Logistic回归;变量筛选
0引言
人工神经网络的数据拟合是通过对输入和输出的分析,来更新各神经元间的连接权重,是一种非线性的统计模型,具有较高的精确度[1]。但是,对于多种因素共同决定的复杂问题来说,由于影响因变量的预测变量过多,将全部预测变量加入模型进行分析,一些重要性较低的变量噪声就会影响整个模型的精度,达不到分析效果[2]。由此,本文提出一种优化的基于Logistic回归变量筛选的神经网络分析方法。
1原理
1.1BP神经网络
BP神经网络是一种基于有监督的学习、使用非线性可导函数作为传递函数的前馈神经网络[3]。BP神经网络具有较强的非线性映射能力、较高的自学习和自适应能力、将学习成果应用于新环境和新知识的能力以及相当的容错能力[4]。
BP算法(Error Back Proragation)学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层[5]。若输出层的实际输出与期望的输出不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据[6]。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止[78]。如图1所示,向量X为输入层输入向量,向量Y为隐层输出向量,向量O为输出层输出向量,矩阵V为输入层到隐层之间的权值矩阵,矩阵W为隐层到输出层之间的权值矩阵。
1.3基于Logistic回归变量筛选的BP神经网络实现方法
使用IBM SPSS Modeler 15.0构建模型[11]。用Logistic回归分析方法拟合数据,提取出符合变量筛选条件的预测变量[12]。构建Logistic回归模型时使用分区数据并为每个分割构建独立的模型;选用多项式过程,变量提取方法使用步进法并使用主效应模型,目标基准类别使用第一类别,迭代次数上限为20次。挑选出满足给定显著水准的预测变量后,将这些预测变量加入数据流作为BP神经网络输入层变量,目标选择创建标准模型,并使用BP算法建立MLP神经网络模型,停止条件为最大训练时间10分钟,防止过度拟合集合设为30%。使用上述权值调整算法建立神经网络进行分类分析,具体模型如图2所示。
2实例分析
股票评级是股票资信评估的一个重要项目,它可以为投资者提供股票的风险信息,降低投资者的风险成本,是投资者决策的重要依据[13]。由于股票价格受到政治、经济、社会等多种因素影响,使用传统的模型拟合往往无法达到令人满意的效果[14],本文提出的模型正好能解决此难题。
2.1数据准备
选取2013年度上证A股、深证A股所有股票,导出2013年1月4日至2013年12月31日间股票交易数据,并从锐思数据库、中国证券报网站、新浪财经数据中心等平台汇总上市公司四季度报(年报)数据。其中年报数据保留盈利能力(包括净资产收益等7项指标)、运营能力(包括应收账款周转率等6项指标)、成长能力(包括主营业务收入增长率等6项指标)、偿债能力(包括流动比率等6项指标)、现金流量(包括现金流量比等5项指标),共计30项财务分析指标。
2.2数据清理
由于样本含量足够大,将近2 500例,对于存在缺失值的实例,将整条数据删除,不作分析使用。
2.3数据变换及离散化
(1)考虑到个别股票在2013年度存在除权除息,如果直接按市场价格计算股票涨跌幅,就会偏离实际情况,因此对这部分股票需要按实际收益计算其涨跌幅度。
(2)计算出年度股票涨跌幅后,将其离散化处理,涨跌幅(-∞,-20%],(-20%,0%],(0%,20%],(20%,+∞)分别离散为0,1,2,3四个数值。
期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。
【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。
投稿辅导服务咨询与期刊合作加盟
陆老师联系QQ: 913775405(普刊)
蒋老师联系QQ: 867306987(核心)
刘老师联系QQ: 271374912(核心)
联系电话:18015016272
17327192284
投稿辅导投稿邮箱:zgqkk365@126.com
期刊推荐
- 《课程教育研究》 旬刊 国家级
- 《网络空间安全》(信息安全与技术)月刊 国
- 《价值工程》旬刊 国家级 科技统计源期刊
- 《高教论坛》 月刊 省级
- 《法制与社会》旬刊 省级
- 《中国教育学刊》月刊 14版北大核心
- 《语文建设》 旬刊 14版北大核心
- 《中国绿色画报》 月刊 国家级
- 《社科纵横》季刊 社科类优秀期刊
- 《求索》月刊 14版北大核心期刊
- 《财会月刊》旬刊 14版北大核心
- 《艺术品鉴》 月刊 省级
- 《中华建设》月刊 国家级 建设类优秀期刊
- 《教学与管理》旬刊 北大核心
- 《当代经济》 旬刊 省级
- 《新课程研究》旬刊 省级 教育类优秀学术期
- 《文教资料》 旬刊 省级
- 《学术界》 月刊 双核心
- 《吉林教育》旬刊 省级 教育类学术期刊
- 《中国农业资源与区划》 月刊 14版北大核心
- 《继续教育研究》月刊 北大核心期刊
- 《财经界(学术版)》半月刊 国家级
- 《电影评介》半月刊 14版北大核心
- 《公路交通科技》 月刊 北大核心
- 《新闻传播》月刊 省级 新闻类优秀期刊