期刊库

教育   经济   科技   财会   管理   
医学   法学   文史   工业   建筑   
农学   水利   计算机   更多>>
 首 页    论文大全   论文精品    学术答疑    论文检测    出书咨询    服务流程    诚信通道    关于我们 

数学思维方法

人气指数: 发布时间:2011-04-12 23:09  来源:http://www.zgqkk.com  作者: 中国期刊库
分享到:

 

【摘  要】数学思维和数学思维方法,是数学学习过程中必须接触的内容,人们在学习数学的过程中,能力的提高主要在于对数学思维(思想)方法的掌握。 
【关键词】抽象性 严密性 确定性 综合法 分析法 符号 概念 
   
  关于思维,心理学给出的定义是:思维是人脑借助于语言对客观事物的本质及其规律的间接与概括的反应,数学思维既符合人类一般思维的规律,又有它自己的规律。一般来说,数学思维特征主要表现在:高度的抽象性、严谨性、严密的逻辑性以及思维结果的确定性。 
  数学思维的抽象性表现在在数学思维的过程中,把思维对象某些非本质的(对数学本身来説)东西舍弃,把思维对象抽象化为一定的数量关系、空间形式或逻辑关系,然后再把这些特定的数量关系表示成为一般的符号形式。数学思维的抽象性还表现在它不仅仅停留在一次抽象的基础上,通常的数学符号形式可能经过了多次的抽象。与人类的所有思维形式相比,这种完全人为创造的数学语言,是数学思维高度抽象化的基础。 
  数学思维的严谨性,是指数学思维在发生、发展和表述的过程中,完全依据一种形式化的严密过程,这种过程中不容许出现一丝差错,也不允许有对与错之间的状况。正是数学思维的这种形式化的严谨性,使数学成为人类所有科学形式的最终表达手段。 
  数学思维具有严密的逻辑性,我们知道,排中律、同一律、矛盾律和充足理由律,是逻辑思维的基本规律,它们是客观事物和现象之间相对稳定性在思维中的反应,它是保证人们正确认识客观世界和正确表达思维的必要条件。正确的思维应该是确定的、无矛盾的、前后一贯的、论据充足的。不然的话,思维就将陷入混乱。在数学思维的过程中,如果违背了这些基本规律,就会产生逻辑错误,论证就得不到正确的结论。因此,数学思维中必须遵守逻辑思维的基本规律。 
  数学思维结果的确定性,是指在数学思维的过程中,其结果是唯一的。我们知道在数学领域中,每一个命题的结果都是唯一的,不可能有两种不同的结果,也就是说任何一个数学命题的结果在对与错之间二者必据其一。 
  数学思维的方法是数学的符号、概念、语言按照数学特定的规律、法则,运用数学思维在数学领域中形成的一种方法。数学思维方法具有一般科学的方法论特征,又有自身的特殊形式。 
  按照数学思维方法运用的领域、表现形式不同可以把数学思维方法分为宏观思维方法和微观思维方法,按照数学思维的逻辑形式不同,可分为逻辑思维方法和非逻辑思维方法,按照数学思维解决问题的不同方式,可以分为程式化思维和发现性思维,按照数学教育的阶段或领域的不同,可以分为不同的带有专业特征的思维方法。 
  宏观数学思维方法,也称基本或重大的数学思维方法,是指对整个数学领域产生重大影响的数学思维方法,如公理化思维方法、变量分析思维方法等。这些思维方法曾极大地推动了整个数学的发展。
  微观数学思维方法,是指对某个数学分支发挥作用或由某些数学家群体使用的数学思维方法,如代数学的一些思维方法、几何学的一些思维方法等。微观数学思维方法还包括数学问题解决和数学问题发现的思维方法。主要包括最基本、最常用的数学思维方法:分析法、综合法、归纳法、演绎。分析法是从问题的结论开始,逐步推出已知条件或已确认成立的事实,从而断定命题成立的方法。综合法是从问题的条件开始逐步推出命题的结论的方法。演绎推理是按照严密的逻辑法则,采用由普遍到个别,由一般到特殊的推理、论证方法,归纳推理是从个别到一般的推理方法,归纳推理试图从个别的例子中得出一般的规律,采用由个别到普遍、由特殊到一般的方法进行推理论证。在归纳推理中,需要注意的是如果前提为真,结论不一定为真。通常情况下,由归纳推理得到的结论还需要用科学的数学方法进行论证。 
  逻辑思维方法,主要是指按照形式逻辑的方式展开数学思维方法。数学的定理、证明及理论构造都是严格按照形式逻辑的思维方式展开和构造的,可以说数学的结果都是按照形式逻辑来表现的。数学思维的非逻辑方法,是指在数学思维中应用的猜想、直觉、灵感、现象等思维方式。这些思维形式经常地、大量地出现在解决数学问题过程中。随着数学的发展,人们越来越认识到非逻辑思维方法在数学学习和数学教育中有着及其重要的作用。 
  数学思维的程式化方法,是指按照数学习惯的、原有的方式来解决问题。在数学学习和解决问题的过程中这种方式表现为规范的逻辑演绎方式。数学的发现性思维,又称之为创新性思维。这种思维方式的特点是它不遵守程式化的逻辑演绎的思维方式,而选择带有个人特性、主观色彩、独立特性的思维方式。现代数学教育理论十分重视这种与传统的数学思维相区别的思维方式。 
  如果按照数学教育的阶段和领域不同还可将其分为不同的带有专业特征的思维方法,如按数学分支的差异,可将其分为几何思维方法、代数思维方法、微积分思维方法、概率统计思维方法等。尽管现代数学的发展使某些数学分支之间的界线变得模糊,但对于初等数学或一般高等数学阶段的学习而言,不同数学分支的数学思维方法都有其自身的明显特征。对于初等数学的学习而言,集合对应的思维方法、公理化结构的方法、空间形式的思维方法变量思维方法等都是具有初等数学特征的一些思维方法。 
  在学习某个数学分支的数学思维中,还可以把数学思维分成不同的思维方法,主要包括:解决数学问题的思维方法;论证表述数学命题的思维方法;构建数学理论体系的思维方法。 
   
  参考文献: 
  [1]董操,刘安君,汪自安.数学教育学.山东大学出版社. 
  [2]王宪昌.数学事物方法.人民教育出版社. 

    期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
      本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。


      【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

     
    QQ在线咨询
    投稿辅导热线:
    180-1501-6272
    微信号咨询:
    fabiaoba-com
    咨询电话:18015016272 投稿邮箱:zgqkk365#126.com(#换成@)
    本站郑重声明:文章只代表作者观点, 并不意味着本站认同。所载文章、数据仅供参考,使用前请核实,风险自负。
    部分作品系转载,版权归原作者或相应的机构   若某篇作品侵犯您的权利,请来信告知.版权:周口博闻教育咨询有限公司 
    Copyright © 2005-2023 . 期刊库 版权所有