低碳建筑评价体系构建与实证分析(2)
①建立多层分析结构模型:目标层A→准则层B→指标层C(如图1所示)。
②构造成对比较矩阵。设某层有n个因素,即{X1,X2,X3,…,Xn}
将该层中两两因素成对比较,比较时取1-9尺度,则构造的成对比较矩阵形式如下:
注:一共构成6个判断矩阵,分别为准则层对目标层的判断矩阵(1个),指标层对准则层的判断矩阵(5个)。
③层次单排序及一致性检验。确定本层各因素对于上一层某因素重要性的排序,成为层次单排序。
求出上述判断矩阵的最大特征值?姿max及相应的归一化特征向量,即权重向量Wi。
为力保所求权值向量Wi的有效性,必须对判断矩阵进行一致性检验,引入一致性检验指标CI、CR,其中:
若CR < 0.1,则判断矩阵通过检验;否则重新构造新的成对比较矩阵。
经计算,层次单排序及一致性检验的结果,如表2所示。
④层次总排序及一致性检验。
确定本层各因素对于总目标重要性的排序,成为层次总排序。
则指标层C对目标层A的权重W=W0·W1·W2·W3·W4·W5,如表3所示。
2.2 层次分析法对实际建筑的评价结果
依据表1中专家给出的各指标分数,利用层次分析法确定的权重值,加权得到实际建筑的最终得分。则实际建筑物(I—VIII)的最终得分分别为:2.8068分、1.9214分、3.2136分、2.0547分、2.2787分、3.1699分、3.8517分、2.8116分。
3 BP神经网络法对低碳建筑的评价
3.1 BP神经网络结构及学习原理
BP算法的基本思路是:输入学习样本,使用反向传播算法对网络的权值进行反复的调整训练,使实际输出与期望输出尽可能接近。假定输入向量X={ X1,X2,X3,…,Xn };期望输出向量d={ d1,d2,d3,…,dq };输出层输出向量Y={ Y1,Y2,Y3,…,Yq };输入层与隐含层、隐含层与输出层的连接权值分别为Wih、Who 。BP神经网络算法的主要步骤如下[2-3]:
3.2 BP神经网络的训练
3.2.1 BP神经网络的建立 根据AHP对评价指标的分析,现提取出对低碳性能影响较大的前8个评价指标,即建筑布局C4、绿化系统C6、能源系统C7、施工材料C9、施工技术C10、维护修理C12、节能设备C13、回收材料C15(该8项指标的权重和为0.9662)。[4]
期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。
【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。
投稿辅导服务咨询与期刊合作加盟
陆老师联系QQ: 913775405(普刊)
蒋老师联系QQ: 867306987(核心)
刘老师联系QQ: 271374912(核心)
联系电话:18015016272
17327192284
投稿辅导投稿邮箱:zgqkk365@126.com
期刊推荐
- 《课程教育研究》 旬刊 国家级
- 《网络空间安全》(信息安全与技术)月刊 国
- 《价值工程》旬刊 国家级 科技统计源期刊
- 《高教论坛》 月刊 省级
- 《法制与社会》旬刊 省级
- 《中国教育学刊》月刊 14版北大核心
- 《语文建设》 旬刊 14版北大核心
- 《中国绿色画报》 月刊 国家级
- 《社科纵横》季刊 社科类优秀期刊
- 《求索》月刊 14版北大核心期刊
- 《财会月刊》旬刊 14版北大核心
- 《艺术品鉴》 月刊 省级
- 《中华建设》月刊 国家级 建设类优秀期刊
- 《教学与管理》旬刊 北大核心
- 《当代经济》 旬刊 省级
- 《新课程研究》旬刊 省级 教育类优秀学术期
- 《文教资料》 旬刊 省级
- 《学术界》 月刊 双核心
- 《吉林教育》旬刊 省级 教育类学术期刊
- 《中国农业资源与区划》 月刊 14版北大核心
- 《继续教育研究》月刊 北大核心期刊
- 《财经界(学术版)》半月刊 国家级
- 《电影评介》半月刊 14版北大核心
- 《公路交通科技》 月刊 北大核心
- 《新闻传播》月刊 省级 新闻类优秀期刊