古典概型与几何概型解法扫描(2)
对于较复杂的古典概型问题,如果直接求解有困难时,可利用正难则反的思维策略,将其转化为其对立事件的概率求解.此类试题的典型条件是“至少”、“至多”、“否定”或“肯定”等.
例2一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n
分析:利用列举法求解编号之和大于4的概率,列举出又放回抽取两球编号的所有结果,满足n
解析:(1)从袋中随机抽取两个球,其一切可能结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个.
因此所求事件的概率为13.
(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
所有满足条件n≥m+2的事件为(1,3)(1,4)(2,4),共3个.
所以满足条件n≥m+2的事件的概率为P1=316,
故满足条件n
点评:在数学解题中,若从正面或顺向难以解决,则不妨进行反面或逆向思考,这就是正难则反策略.这种策略提醒我们,从正面解决困难时可考虑反面求解,直接解决困难时可考虑间接解决,顺推困难时可考虑逆推.这种思维实际上是逆向思维,体现了思维的灵活.
三、数形结合法
根据已知条件作出大致的几何图形.从而确定运用何种测度公式.
例3已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域x+y-8≤0
x>0
y>0内的随机点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.
分析:根据原函数是增函数确定a,b的范围,枚举基本事件总数与事件A的个数,可求第(1)问,作出可行域,计算测度(面积),计算第(2)问.
解析:(1)∵函数f(x)=ax2-4bx+1图象的对称轴为x=2ba,要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且2ba≤1,即2b≤a.
若a=1,则b=-1;若a=2,则b=-1,1;若a=3,则b=-1,1.
∴事件包含基本事件的个数是1+2+2=5,∴所求事件的概率为515=13.
(2)由(1)知当且仅当2b≤a且a>0时,
函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,
依条件可知试验的全部结果所构成的区域为{(a,b)|a+b-8≤0
a>0
b>0}.
构成所求事件的区域为三角形部分,由a+b-8=0
b=a2得交点坐标为(163,83).
∴所求事件的概率为P=12×8×8312×8×8=13.
点评:几何概型问题难度不大,但需要准确理解题意.解决此类问题首先要确定所求事件中对应的图形的形状,该图形的确定往往取决于元素的个数,一个元素多与线段的长度或角度相关,两个元素多与平面图形的面积相关,三个元素多与几何体的体积有关,然后确定该事件的度量依据,最后确定度量方法.
四、构造模型法
当一些代数问题的概率不能直接计算时,可通过建立函数关系,确定约束条件,构造几何模型来求之.
例4在区间[0,1]上任取三个实数x、y、z,事件A={(x,y,z)|x2+y2+z2<1}.
(1)构造出此随机事件对应的几何图形;
(2)利用该图形求事件A的概率.
分析:由于事件A对应的结果是由三维数构成的,所以试验的所有结果都是由三维数构成,转化成与体积有关的几何概型问题.
解析:(1)如图,由区间[0,1]上的三个实数组成的基本事件总体构成以1为边长的正方体,对应的集合Ω={(x,y,z)|0≤x≤1,0≤y≤1,0≤z≤1},而随机事件A={(x,y,z)|x2+y2+z2<1,x≥0,y≥0,z≥0}对应的几何图形为在正方体内以O为球心,以1为半径的球的18部分.
(2)由于x,y,z属于区间[0,1],当x=y=z=1时,为正方体的一个顶点,事件A为球在正方体内的部分.
∴P(A)=18×43π×1313=π6.
点评:基本事件的对应结果用有序实数组表示,要注意概率的取值范围,若数的取值是离散的,则为古典概型;若数的取值是连续的,则可转化为几何概型.由于x、y、z的取值是[0,1]上的任意实数,其构成三维空间,转化为与体积有关的几何概型.构造几何图形时要注意变量的取值范围对图形的限制.在将概率问题进行转化时,要注意表示事件结果的数值的个数,一个数的转化为与长度有关的几何概型,两个数的转化为与面积有关的几何概型.三个数的转化为与体积有关的几何概型.
期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。
【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。
投稿辅导服务咨询与期刊合作加盟
陆老师联系QQ:
蒋老师联系QQ:
刘老师联系QQ:
联系电话:18015016272
17327192284
投稿辅导投稿邮箱:zgqkk365@126.com
期刊推荐
- 《校园英语》旬刊 省级 教育类学术期刊
- 《吉林教育》旬刊 省级 教育类学术期刊
- 《文教资料》 旬刊 省级
- 《科技风》半月刊 省级 科技类优秀期刊
- 《价值工程》旬刊 国家级 科技统计源期刊
- 《中国实验方剂学杂志》 半月刊 北大核心
- 《电影评介》半月刊 14版北大核心
- 《社科纵横》季刊 社科类优秀期刊
- 《求索》月刊 14版北大核心期刊
- 《中华建设》月刊 国家级 建设类优秀期刊
- 《继续教育研究》月刊 北大核心期刊
- 《网络空间安全》(信息安全与技术)月刊 国
- 《新闻传播》月刊 省级 新闻类优秀期刊
- 《财会月刊》旬刊 14版北大核心
- 《体育文化导刊》月刊 体育类双核心期刊
- 《机械研究与应用》双月刊 省级 机械应用类
- 《公路交通科技》 月刊 北大核心
- 《教学与管理》旬刊 北大核心
- 《新课程研究》旬刊 省级 教育类优秀学术期
- 《中国医药指南》 旬刊 国家级
- 《高教论坛》 月刊 省级
- 《课程教育研究》 旬刊 国家级
- 《语文建设》 旬刊 14版北大核心
- 《教育发展研究》 半月刊 双核心
- 《学术界》 月刊 双核心