在线客服系统

期刊库

教育   经济   科技   财会   管理   
医学   法学   文史   工业   建筑   
农学   水利   计算机   更多>>
 首 页    论文大全   论文精品    学术答疑    论文检测    出书咨询    服务流程    诚信通道    关于我们 

古典概型与几何概型解法扫描(2)

人气指数: 发布时间:2014-01-18 13:52  来源:http://www.zgqkk.com  作者: 张涛
分享到:

 


  对于较复杂的古典概型问题,如果直接求解有困难时,可利用正难则反的思维策略,将其转化为其对立事件的概率求解.此类试题的典型条件是“至少”、“至多”、“否定”或“肯定”等.
  例2一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
  (1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
  (2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n
  分析:利用列举法求解编号之和大于4的概率,列举出又放回抽取两球编号的所有结果,满足n
  解析:(1)从袋中随机抽取两个球,其一切可能结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个.
  因此所求事件的概率为13.
  (2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4),共16个.
  所有满足条件n≥m+2的事件为(1,3)(1,4)(2,4),共3个.
  所以满足条件n≥m+2的事件的概率为P1=316,
  故满足条件n
  点评:在数学解题中,若从正面或顺向难以解决,则不妨进行反面或逆向思考,这就是正难则反策略.这种策略提醒我们,从正面解决困难时可考虑反面求解,直接解决困难时可考虑间接解决,顺推困难时可考虑逆推.这种思维实际上是逆向思维,体现了思维的灵活.
  三、数形结合法
  根据已知条件作出大致的几何图形.从而确定运用何种测度公式.
  例3已知关于x的一元二次函数f(x)=ax2-4bx+1.
  (1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
  (2)设点(a,b)是区域x+y-8≤0
  x>0
  y>0内的随机点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.
  分析:根据原函数是增函数确定a,b的范围,枚举基本事件总数与事件A的个数,可求第(1)问,作出可行域,计算测度(面积),计算第(2)问.
  解析:(1)∵函数f(x)=ax2-4bx+1图象的对称轴为x=2ba,要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且2ba≤1,即2b≤a.
  若a=1,则b=-1;若a=2,则b=-1,1;若a=3,则b=-1,1.
      ∴事件包含基本事件的个数是1+2+2=5,∴所求事件的概率为515=13.
  (2)由(1)知当且仅当2b≤a且a>0时,
  函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,
  依条件可知试验的全部结果所构成的区域为{(a,b)|a+b-8≤0
  a>0
  b>0}.
  构成所求事件的区域为三角形部分,由a+b-8=0
  b=a2得交点坐标为(163,83).
  ∴所求事件的概率为P=12×8×8312×8×8=13.
  点评:几何概型问题难度不大,但需要准确理解题意.解决此类问题首先要确定所求事件中对应的图形的形状,该图形的确定往往取决于元素的个数,一个元素多与线段的长度或角度相关,两个元素多与平面图形的面积相关,三个元素多与几何体的体积有关,然后确定该事件的度量依据,最后确定度量方法.
  四、构造模型法
  当一些代数问题的概率不能直接计算时,可通过建立函数关系,确定约束条件,构造几何模型来求之.
  例4在区间[0,1]上任取三个实数x、y、z,事件A={(x,y,z)|x2+y2+z2<1}.
  (1)构造出此随机事件对应的几何图形;
  (2)利用该图形求事件A的概率.
  分析:由于事件A对应的结果是由三维数构成的,所以试验的所有结果都是由三维数构成,转化成与体积有关的几何概型问题.
  解析:(1)如图,由区间[0,1]上的三个实数组成的基本事件总体构成以1为边长的正方体,对应的集合Ω={(x,y,z)|0≤x≤1,0≤y≤1,0≤z≤1},而随机事件A={(x,y,z)|x2+y2+z2<1,x≥0,y≥0,z≥0}对应的几何图形为在正方体内以O为球心,以1为半径的球的18部分.
  (2)由于x,y,z属于区间[0,1],当x=y=z=1时,为正方体的一个顶点,事件A为球在正方体内的部分.
  ∴P(A)=18×43π×1313=π6.
  点评:基本事件的对应结果用有序实数组表示,要注意概率的取值范围,若数的取值是离散的,则为古典概型;若数的取值是连续的,则可转化为几何概型.由于x、y、z的取值是[0,1]上的任意实数,其构成三维空间,转化为与体积有关的几何概型.构造几何图形时要注意变量的取值范围对图形的限制.在将概率问题进行转化时,要注意表示事件结果的数值的个数,一个数的转化为与长度有关的几何概型,两个数的转化为与面积有关的几何概型.三个数的转化为与体积有关的几何概型.
 

期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
  本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。


  【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。

 
QQ在线咨询
投稿辅导热线:
180-1501-6272
微信号咨询:
fabiaoba-com
咨询电话:18015016272 投稿邮箱:zgqkk365#126.com(#换成@)
本站郑重声明:文章只代表作者观点, 并不意味着本站认同。所载文章、数据仅供参考,使用前请核实,风险自负。
部分作品系转载,版权归原作者或相应的机构   若某篇作品侵犯您的权利,请来信告知.版权:周口博闻教育咨询有限公司 
Copyright © 2005-2023 . 期刊库 版权所有